skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Payne, Nora Yujia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Genomic data sets contain the effects of various unobserved biological variables in addition to the variable of primary interest. These latent variables often affect a large number of features (e.g., genes), giving rise to dense latent variation. This latent variation presents both challenges and opportunities for classification. While some of these latent variables may be partially correlated with the phenotype of interest and thus helpful, others may be uncorrelated and merely contribute additional noise. Moreover, whether potentially helpful or not, these latent variables may obscure weaker effects that impact only a small number of features but more directly capture the signal of primary interest. To address these challenges, we propose the cross-residualization classifier (CRC). Through an adjustment and ensemble procedure, the CRC estimates and residualizes out the latent variation, trains a classifier on the residuals, and then reintegrates the latent variation in a final ensemble classifier. Thus, the latent variables are accounted for without discarding any potentially predictive information. We apply the method to simulated data and a variety of genomic data sets from multiple platforms. In general, we find that the CRC performs well relative to existing classifiers and sometimes offers substantial gains. 
    more » « less